Source-based neurofeedback methods using EEG recordings: training altered brain activity in a functional brain source derived from blind source separation
نویسندگان
چکیده
A developing literature explores the use of neurofeedback in the treatment of a range of clinical conditions, particularly ADHD and epilepsy, whilst neurofeedback also provides an experimental tool for studying the functional significance of endogenous brain activity. A critical component of any neurofeedback method is the underlying physiological signal which forms the basis for the feedback. While the past decade has seen the emergence of fMRI-based protocols training spatially confined BOLD activity, traditional neurofeedback has utilized a small number of electrode sites on the scalp. As scalp EEG at a given electrode site reflects a linear mixture of activity from multiple brain sources and artifacts, efforts to successfully acquire some level of control over the signal may be confounded by these extraneous sources. Further, in the event of successful training, these traditional neurofeedback methods are likely influencing multiple brain regions and processes. The present work describes the use of source-based signal processing methods in EEG neurofeedback. The feasibility and potential utility of such methods were explored in an experiment training increased theta oscillatory activity in a source derived from Blind Source Separation (BSS) of EEG data obtained during completion of a complex cognitive task (spatial navigation). Learned increases in theta activity were observed in two of the four participants to complete 20 sessions of neurofeedback targeting this individually defined functional brain source. Source-based EEG neurofeedback methods using BSS may offer important advantages over traditional neurofeedback, by targeting the desired physiological signal in a more functionally and spatially specific manner. Having provided preliminary evidence of the feasibility of these methods, future work may study a range of clinically and experimentally relevant brain processes where individual brain sources may be targeted by source-based EEG neurofeedback.
منابع مشابه
Seizure source localization using a hybrid second order blind identification and extended rival penalized competitive learning algorithm
Localization of seizure sources prior to neurosurgery is crucial. In this paper, a new method is proposed to localize the seizure sources from multi-channel electroencephalogram (EEG) signals. Blind source separation based on second order blind identification (SOBI) is primarily applied to estimate the brain source signals in each window of the EEG signals. A new clustering method based on riva...
متن کاملElectromagnetic brain mapping - IEEE Signal Processing Magazine
seen tremendous advances in our ability to produce images of human brain function. Applications of functional brain imaging extend from improving our understanding of the basic mechanisms of cognitive processes to better characterization of pathologies that impair normal function. Magnetoencephalography (MEG) and electroencephalography (EEG) (MEG/EEG) localize neural electrical activity using n...
متن کاملEEG-based local brain activity feedback training—tomographic neurofeedback
Along with the development of distributed EEG source modeling methods, basic approaches to local brain activity (LBA-) neurofeedback (NF) have been suggested. Meanwhile several attempts using LORETA and sLORETA have been published. This article specifically reports on "EEG-based LBA-feedback training" developed by Bauer et al. (2011). Local brain activity-feedback has the advantage over other s...
متن کاملExtended leA Removes Artifacts from Electroencephalographic Recordings
Severe contamination of electroencephalographic (EEG) activity by eye movements, blinks, muscle, heart and line noise is a serious problem for EEG interpretation and analysis. Rejecting contaminated EEG segments results in a considerable loss of information and may be impractical for clinical data. Many methods have been proposed to remove eye movement and blink artifacts from EEG recordings. O...
متن کاملRemoving electroencephalographic artifacts by blind source separation.
Eye movements, eye blinks, cardiac signals, muscle noise, and line noise present serious problems for electroencephalographic (EEG) interpretation and analysis when rejecting contaminated EEG segments results in an unacceptable data loss. Many methods have been proposed to remove artifacts from EEG recordings, especially those arising from eye movements and blinks. Often regression in the time ...
متن کامل